[Änderungen von Version 7.5 auf Version 8 vom 1.01. 2019]

Mit dem Jahreswechsel 2018/2019 treten einige wesentliche Änderungen und Zusätze des EBC-Standards in Kraft. Dies betrifft insbesondere die neuen Kapitel 10 und 11. In Kapitel 10 wird die Zertifizierung von Pflanzenkohle verarbeitenden Betrieben und Kapitel 11 die Kennzeichnungspflicht und Etikettierung geregelt. Alle weiteren Änderungen werden im Folgenden dokumentiert. Zusätze und Streichungen werden rot markiert; die Kommentare sind kursiv gesetzt:

Kapitel 3:

3.4  Beim Einsatz von landwirtschaftlichen Primärprodukten (z.B. der Anbau von Biomasse für die Herstellung von Pflanzenkohle und Energie) muss eine nachhaltige Produktion der nachwachsenden Rohstoffe gewährleistet sein.

3.5  Pflanzenkohle darf nur dann aus Forstholz und Kurzumtriebsplantagen hergestellt werden, wenn eine nachhaltige Bewirtschaftung des entsprechenden Waldes zum Beispiel durch PEFC, FSC oder vergleichbare Standards oder Gesetze nachgewiesen werden kann.

3.6  Es dürfen nur Biomassen europäischer Herkunft für die Herstellung von Pflanzenkohle verwendet werden.

3.6  Biomassen zur Herstellung von Pflanzenkohle dürfen nicht weiter als 80 km bis zur Pyrolyseanlage transportiert werden. Ausgenommen sind Pyrolysezusatzstoffe oder spezielle Biomassen zu Versuchszwecken. [Da zurzeit noch kein ausreichend dichtes Netz von Pyrolyseanlagen besteht, kann für einzelne Biomassen eine Ausnahmegenehmigung (ANG) bezüglich der Transportdistanz beantragt werden, sofern sichergestellt wird, dass es sich nur um eine zeitlich begrenzte Ausnahme handelt.]

Kommentar: Grundsätzlich sind wir nach wie vor der Meinung, dass Biomassetransporte über weite Distanzen vermieden werden sollten, und die Pflanzenkohle möglichst dezentral produziert werden sollte. Trotzd der stetigen Entwicklung der Pflanzenkohle-Produktion in Europa ist eine Limitierung der Transportdistanz derzeit jedoch nicht praktikabel und sinnvoll. Aus diesem Grund wird der Richtlinienpunkt 3.6 durch die Vorgabe ersetzt, dass die Biomassen zur Herstellung von Pflanzenkohle europäischer Herkunft zu sein haben. Dies um zu verhindern, dass wie beim Handel mit Holzpellets die Biomasseproduktion in Entwicklungsländer oder Länder mit niedrigen gesetzlichen Umweltvorgaben (z.B. USA) verlegt werden.

Kapitel 5:

5.3. Die monatliche Sammelprobe von mindestens 3 kg muss drei Jahre trocken und geschützt aufbewahrt werden.

Kapitel 6:

Es ist nicht die Aufgabe und Zweck des EBC-Zertifikats, eine komplette physiko-chemische Charakterisierung von Pflanzenkohle vorzulegen. Die Kosten der dafür notwendigen Analytik würde den Rahmen des EBC sprengen. Von entscheidender Bedeutung für das EBC-Zertifikat ist vielmehr, die Einhaltung aller umweltrelevanten Grenzwerte zu garantieren und alle für die landwirtschaftliche Praxis relevanten Produkteigenschaften zu deklarieren.

Die jeweils zulässigen Prüfverfahren sowie die analytischen Methoden für die einzelnen Parameter sind in Kapitel 13 detailliert.

Kommentar: Die zulässigen Prüfverfahren werden fortan nur noch im Kapitel 13 genannt und beschrieben und daher nicht mehr in Kapitel 6 vermerkt.

Kapitel 7:

7.1 Die Biomassepyrolyse muss energieeffizient betrieben werden in einem energieautonomen Prozess ablaufen

Die zum Betrieb der Anlage eingesetzte Energie (Strom für Antriebe, Lüftung und BMSR, Brennstoff für die Vorbeheizung usw.) darf 8 % (basic) bzw. 4 % (premium) des Heizwertes der im gleichen Zeitraum pyrolysierten Biomasse nicht überschreiten. Eine externe Reaktorbeheizung mit fossilen Brennstoffen ist mit Ausnahme der Vorbeheizung des Pyrolysereaktors untersagt. Die Nutzung von Abwärme anderer industrieller Prozesse wie z.B. Biogasherstellung oder Zementherstellung oder die Nutzung von Solarthermie ist gestattet. Bei elektrischer Beheizung des Pyrolyse-Reaktors muss die Nutzung von erneuerbaren Energien oder die Nutzung von Strom-Überangaboten nachgewiesen werden.

7.2 Die bei der Pyrolyse entstehenden Synthesegase müssen abgefangen werden und dürfen nicht in die Atmosphäre entweichen.

[...] Werden die Pyrolysegase hingegen direkt zur Wärmenutzung sauber abgebrannt oder zur weiteren Verwertung als Treibstoffe oder chemische Rohstoffe abgeschieden, ist die Umweltbelastung gering und sogar deutlich besser als bei der Biomasseverbrennung oder Kompostierung. [...]

7.4 Die Abwärme der Pyrolyseanlage muss genutzt werden.

[...] Ein Teil der Verbrennungsenergie des Pyrolysegases wird in der Regel zur Erwärmung der Biomasse verwendet, die darüber hinaus entstehende Abwärme muss zu mindestens 70% zum Trocknen von Biomasse, Heizzwecken, zur Stromherstellung oder auf ähnliche Weise genutzt werden. Wie unter 7.3 beschrieben, können Bioöl und Pyrolysegase auch gespeichert und einer anderweitigen Energienutzung zugeführt werden.

Kommentar: Die Pyrolysetechnologie hat sich in den letzen Jahren wesentlich weiterentwickelt. Die Forschung&Entwicklung der Pyrolyse orientiert sich vermehrt an Lösungen, die nahezu den gesamten Kohlenstoff der Biomassen in materiell nutzbare und/oder sequestrierbare Form überführt. Wenn aber die Pyrolysegase zu chemischen Rohstoffen und Treibstoffen aufbereitet werden, stehen sie nicht mehr für die Erhitzung der Pyrolyse-Reaktoren zur Verfügung. So kann die Wärme für die Pyrolysereaktoren zum Beispiel durch erneuerbaren Strom bereitgestellt werden (sogenannte E-Pyrolyse). Um diesen neuen Entwicklungen Rechnung zu tragen, wird die Begrenzung des Einsatzes externer Energie aufgehoben. Erhalten bleibt das Verbot, fossile Brennstoffe zur Reaktorbeheizung zu verwenden. Hinzu kommt die Vorgabe, dass bei elektrischer Beheizung des Reaktors, der Strom aus regenerierbaren Quellen (Solar, Wind) stammen muss. 

Kapitel 8:

[hinzugefügt:]

8.2 Alle Arbeiter müssen schriftlich über mögliche Risiken und Gefahren des Produktionsprozesses aufgeklärt werden und dies entsprechend signieren. Im Besonderen betrifft dies die Selbstentzündlichkeit von Kohlestaub, Atemschutz, Kontakt mit Bioöl und Teeren sowie möglicher Gasaustritt.  

Kapitel 10:

10. Zertifizierung von Pflanzenkohle-Produkten und verarbeitenden Betrieben

Kommentar: Bisher hat das EBC nur die Produktion von Pflanzenkohle zertifiziert. Dies führte jedoch dazu, dass Betriebe, die zertifizierte Pflanzenkohle für die Zugabe zu ihren Produkten hinzukauften, diese nicht mit dem EBC-Zertifikat auszeichnen konnten, da ja keine Kontrolle für die verarbeitenden Betriebe geregelt war. Mit dem rasch wachsenden Markt für Pflanzenkohle basierte Produkte wurde es dringend notwendig, diese Lücke zu schließen. Fortan können Produkte, die EBC zertifizierte Pflanzenkohle enthalten, EBC zertifiziert werden. Zu beachten ist hierbei insbesondere, dass ein Hersteller von Pflanzenkohle basierten Produkten nur dann EBC-zertifiziert werden kann, wenn sämtliche von ihm verarbeitete Pflanzenkohle EBC zertifiziert ist. Geregelt werden die Wareneingangskontrolle, die Lagerung und die Verarbeitung (Führung von Verarbeitungsjournalen).

Für den genauen Wortlaut des neuen Kapitel 10 konsultieren Sie bitte die Richtlinien.

Kapitel 11

11. Kennzeichnungspflichten, Etikettierung, Logos und Verkauf

Kommentar: Ebenfalls neu geregelt wird die Kennzeichung und Etikettierung von Pflanzenkohle und Pflanzenkohle basierten Produkten. Dies dient zum einen zur besseren Information der Kunden sowie etwaigen Kontrollbehörden, und zum anderen um herstellerneutral jeweils gleiche Produktinformation zu liefern. Durch die Standardisierung soll nicht zuletzt auch verhindert werden, dass sich nicht zertifizierte Betriebe durch einseitige oder ungenaue Produktinformationen auf Kosten der EBC-Produzent profilieren.

Eine wichtige Neuerung ist, dass auf dem Etikett und Lieferschein ein Internetlink oder QR-Code abgedruckt sein muss, über welchen die EBC-zertifizierte Analyse der entsprechenden Charge eingesehen und heruntergeladen werden kann.    

Kapitel 12

12. Kontrolle und Zertifizierung

[...] Jeder Pflanzenkohle-Hersteller muss gesamtheitlich als EBC-Produzent zertifiziert werden, und zwar unabhängig davon, ob sich nur ein Batch, mehrere oder alle Batches für eines der EBC-Zertifikate qualifizieren. Pflanzenkohle aus nicht EBC zertifizierten Batches darf nicht in die Land- oder Viehwirtschaft verkauft werden.  

[...]

Für Pflanzenkohle verarbeitende Betriebe gilt ebenfalls eine Kleinproduzenten-Regelung. Werden pro Jahr weniger als 10 t Pflanzenkohle zu Pflanzenkohle basierten Produkten verarbeitet, sind diese Betriebe vom jährlichen Kontrollbesuch auf der Betriebsstätte entbunden. Die Einhaltung der Produktions- und Qualitätsrichtlinien werden durch die staatlich akkreditierte Kontrollstelle mithilfe von Selbstdeklarierung und Verarbeitungsprotokollen evaluiert.



[Änderungen von Version 7.4 auf Version 7.5 vom 2.06. 2018]

Kap 6.5 S.12 [hinzugefügt:]

Zulässiges Prüfverfahren: DIN 11885

Kommentar: Das Verfahren DIN 11885 stand bereits in den detallierten Analysebeschreibungen und wurde standardmässig verwendet. Mit der Aufnahme des Prüfverfahrens wird ein Unterlassungsfehler berichtigt.  


[Änderungen von Version 7.3 auf Version 7.4 vom 14.08. 2017]

Kap 5. S.10 [hinzugefügt:]

 

5.9 Alternativ kann während 24 h aller 30 Minuten eine automatisierte Querstromprobe von 100g aus dem kontinuierlichen Produktionsprozess gezogen werden. Eine solche Querstromprobe würde die oben beschriebene Probenahmemethode ersetzen.

[...]

5.11 Rückstellprobe

Zusätzlich zur EBC-Analyse-Probe sowie zur Sichtprobe sind der Hersteller verpflichtet, täglich eine Querstromprobe von mindestens 100 g zu entnehmen. Der tägliche Entnahmezeitpunkt ist im Produktionsprotokoll einzutragen. Die Querstromproben sind für jeweils einen Monat in einem größeren Probebehälter als Mischprobe zu sammeln. Nach einem Monat ist die Mischprobe zu versiegeln. Die nächsten 30 Querstromproben werden in einem neuen Probebehälter gesammelt, bis auch dieser versiegelt und gelagert wird. Die Querstromprobe kann sowohl manuell als auch automatisiert aus der Tagesproduktion entnommen werden [2]. Die Querstromprobe garantiert am sichersten eine repräsentative Probenahme des Produktes. [Änderungen von Version 7.3 auf Version 7.4 vom 14.08. 2017]

Kap. 10 S. 21 [hinzugefügt:]
Produziert ein Hersteller mehr als 50 t Pflanzenkohle pro Jahr, gilt dieser nicht mehr als Kleinproduzent und zwar unabhängig davon, ob nur ein Teil der Pflanzenkohle-Produktion zertifiziert wird. Produziert ein Hersteller z.B. 200 t Pflanzenkohle pro Jahr, will davon aber nur ein Batch von 40 t Pflanzenkohle nach EBC zertifizieren lassen, so ist ein jährlicher Kontrollbesuch auf der Betriebsstätte zwingend. 

 

[Änderungen von Version 7.0 auf Version 7.3 vom 12.05. 2016]

Es wurden die Quellennachweise für EBC-Futter ergänzt und für PAK-Analyse neu die DIN CEN/TS 16181 zugelassen.

 

[Änderungen von Version 7.0 auf Version 7.2 vom 2.12. 2015]

Zur Wahrung der Verhältnismässigkeit werden Produzenten mit einer Jahresproduktion von weniger als 50 t Pflanzenkohle vom jährlichen Kontrollbesuch auf der Betriebsstätte entbunden. Die Einhaltung der Produktions- und Qualitätsrichtlinien werden durch die staatlich akkreditierte Kontrollstelle mithilfe von Selbstdeklarierung, Analyseprotokollen und detaillierter Produktionsbeschreibung evaluiert. Die Anforderungen hinsichtlich der Pflanzenkohleanalytik, der Grenzwerte, der Biomassen und dem Verkauf sind die gleichen wie für industrielle Hersteller.

  

[Änderungen von Version 6.1 auf Version 7.0 vom 2.12. 2015]

Mit der Version 7 des EBC-Zertifikates wird die Zertifizierung von EBC-Futter Qualität eingeführt. Dies ist die wichtigste Neuerung der Richtlinienüberarbeitung vom 2.12.2015. Weitere Änderungen betreffen die genauere Fassung der Einsendungen von Proben an die akkreditierten Labore sowie die Sendung von Sichtproben an die EBC. Eingeführt wird zudem ein verpflichtender Grenzwert für Arsen.

[Änderung in Kapitel 4]

[hinzugefügt:]

Sendung der Pflanzenkohle-Probe an das akkreditierte Analyselabor:

4.1  Die Pflanzenkohle-Proben müssen innerhalb der ersten drei Tage nach Beginn einer Charge an das akkreditierte Labor gesendet werden. Sofern sichergestellt ist, dass die gleichen Prozessparameter und Biomassen verwendet werden, darf eine Pflanzenkohleprobe bereits maximal drei Wochen vor Chargenbeginn zur Analyse an das akkreditierte Labor eingesendet werden.

4.2  Bei der Einsendung der Pflanzenkohle-Probe an ein EBC-akkreditiertes Analyselabor muss die Nummer der Pflanzenkohle-Charge eindeutig übermittelt werden.

4.3  Dem akkreditierten Labor muss mit der Übermittlung der Pflanzenkohle-Probe mitgeteilt werden, dass es sich um eine Analyse für das EBC-Zertifikat handelt.

4.4  Das akkreditierte Labor sendet die Analyseergebnisse in Kopie an das akkreditierte Kontrollorgan und an die EBC.

4.5  Die EBC hat das Recht, die Analyseergebnisse anonymisiert für statistische Auswertungen zu verwenden.


[Änderung in Kapitel 5]

[hinzugefügt:]5.9 Sichtprobe

Bei jedem Kontrollbesuch wird zudem durch den Kontrolleur eine Sichtprobe sowohl der verwendeten Biomassen als auch der daraus resultierenden Pflanzenkohle genommen und versiegelt an die EBC gesendet.

 

[Änderung in Kapitel 6.6]

basic: Pb < 150 g t-1 TM; Cd < 1,5 g t-1 TM; Cu < 100 g t-1 TM; Ni < 50 g t-1 TM; Hg < 1 g t-1 TM; Zn < 400 g t-1 TM; Cr < 90 g t-1 TM; As < 13 g t-1 TM

premium: Pb < 120 g t-1 TM; Cd < 1 g t-1 TM; Cu < 100 g t-1TM; Ni < 30 g t-1 TM; Hg < 1 g t-1 TM; Zn < 400 g t-1 TM; Cr < 80 g t-1 TM; As < 13 g t-1 TM


[Neu: Kapitel 9]

 

9. Pflanzenkohle für den Einsatz in der Tierfütterung (EBC-Futter)

Pflanzenkohle ist ein traditioneller Futterzusatzstoff, der häufig bei Verdauungsstörungen von Nutztieren eingesetzt wurde. Erst seit einigen Jahren wird Pflanzenkohle vermehrt auch im täglichen Mischfutter eingesetzt. Der Einsatz von Pflanzenkohle als Futtermittel ist nach der EU-Futtermittelverordnung (Europ et al., 2011) zugelassen. Entsprechend der EU-Futtermittelverordnung gelten für den Einsatz von Pflanzenkohle als Futtermittel andere bzw. zusätzliche Grenzwerte als für deren Einsatz als Bodenzusatz. Im Folgenden werden die zusätzlich zum EBC-Zertifikat zu erhebenden Parameter und Analysemethoden für das EBC-Futter Zertifikat spezifiziert. [Sie können hier das gesamte neue Kapitel 9 der Richtlinienversion 7.0 herunterladen]

 



[changes from version 6 to version 6.1 from 19th June 2015]

The main modifications concern the general requirements for biochar production records listed in chapter 4 which were adapted for the inclusion of small scale production. The terminology of "biochar production batch" was changed to "biochar production series" because in batch pyrolysis systems several batches may constitute one productions series. This is especially relevant for small scale production systems that are mostly batch systems. 

[Modification in chapter 4:]

Each biochar series must be clearly labelled and be given a unique identification number for reconstructing the circumstances of production and guaranteeing the quality of the biomasses used. For each biochar series, separate production records are to be kept. Each series must be tested to ensure compliance with the required threshold values.

A uniform biochar series is deemed to exist when the following criteria are met:

  1. The pyrolysis temperature in °C do not fluctuate more than 20%. Interruption of the production is allowed as far as the production parameters keep the same after the resumption of production. For small-scale production with a yearly production below 20 t of biochar the continuous recording of production temperatures are not requested.  
  2. The composition of the pyrolysed biomasses does not fluctuate more than 15% based on the type of feedstock listed in the feedstock positive list.

 

[changes from version 5 to version 6 from 21st March 2015]

The main modification concerns the inclusion of small scale producers with less than 20 tons annual biochar production. In order to be reasonably proportional to the risk assessment and to the environmental protection goals, producers with an annual production capacity below 20 t of biochar are exempt from on-site inspection of production. The compliance with production requirements is controlled by the accredited quality assurance agency via self-declaration and a detailed description of the complete production process. The requirements for biochar batch analyses, thresholds, feedstock sustainability and handling of biochar maintain the same as for industrial producers.  


[Modification in chapter 5.3:]

5.1   15 subsamples of 1.5 liter each have than to be arbitrarily gathered from different spots of the homogenized biochar lot (ISO (2006) or Bunge & Bunge (1999)). For small scale production of less than 200 liters per day the subsample size may be reduced to 0.5 liters.

 

[Modification in chapter 6.1:]

6.1 The biochar's carbon content must be higher than 50% of the dry mass (DM). Pyrolysed organic matter with a carbon content lower than 50% are classified as Bio-Carbon-Minerals” (BCM). Pyrogenic Carbonaceous Material (PCM).

 

[Modification in chapter 6.3:]

6.3 The molar O/Corg ratio must be less than 0.4

In addition to the H/Corg ratio, the O/Corg ratio is also relevant for characterising biochar and differentiating it from other carbonisation products (Schimmelpfennig and Glaser, 2012). Compared to the H/Corg ratio, direct measuring of the O content is relatively expensive and not standardized. Therefore the calculation of the O content from C, H, B, S and ash content is accepted.

Permitted test methods: DIN 51733, ISO 17247

(Specify for each batch)

 

[Addition in chapter 6.4:]

(Specify for each batch for producers of more than 200 t biochar or PCM per year)

 

[Addition in chapter 6.9:]

(Specify for each production unit for producers of more than 200 t biochar or PCM per year)

 

[Addition in chapter 7.2:]

Most of the global charcoal and biochar production is still done using obsolete technology (Brown et al., 2015) where most of the original feedstock carbon is released as toxic emissions to the atmosphere. Even though the quality of biochar produced in such kilns may meet EBC requirements, the environmental impact of such production techniques is highly negative.

If pyrolysis gases are trapped and used as fuel and bio-oil or are cleanly burned the environmental impact is neutral or even improved compared to biomass burning or natural decomposing. Under the EBC biochar production technology that releases unburned pyrolysis gases are not permitted.


[Addition in chapter 7.4:]

Although it is highly recommended, small-scale biochar production units with an annual output of less than 20 tons are exempt of the heat recovery.

 

[Addition in chapter 9:]

In order to be reasonably proportional to the risk assessment and to the environmental protection goals, producers with an annual production capacity below 20 t of biochar are exempt from on-site inspection of production.  The compliance with production requirements is controlled by the accredited quality assurance agency via self-declaration and a detailed description of the complete production process. The requirements for biochar batch analyses, thresholds, feedstock sustainability and handling of biochar maintain the same as for industrial producers.    

 



[30th November 2014]

[Modification in chapter 4.3:]


The production period of the batch does not exceed 1 year 120 days of production within a maximum of 240 days.


[Modification in chapter 5:]

The biochar samples have to be taken following the procedure described here. Once in the first three years a sample has to be taken by the accredited controlling inspector and sent by him to the accredited laboratory.


[Erasure of point 5.4]

The analysis of black carbon content is not standardized yet and thus not practical for the standard. The thermographic analysis is sufficient to estimate the black carbon content.


[Addition in point 5.9 (former 5.10):]

Modern pyrolysis facilities produce only very low levels of PCB, dioxins and furans, meaning that one control per production unit can be considered sufficient. Dioxin content is mostly dependent on the chlorine content of the feedstock. All authorized feedstock of the feedstock positive list have low chlorine content and will produce during pyrolysis only dioxin contents that are lower than the threshold by several orders of magnitude. If the controlling organism or the EBC considers the risk of chlorine contamination of a given feedstock as relevant, they can require supplemental dioxin analyses.


[Addition of new feedstock on feedstock positive list:]

addition of manure in the section animal byproducts


 

[13th December 2013]

[Addition of chapter 5:]

5. Biochar sampling

Once a year a sample has to be taken by the accredited controlling inspector and sent by him to the accredited laboratory; further batch samples can be taken by the producer himself. 

To obtain a biochar sample as representative as possible (in terms of accuracy and precision) of a total lot (batch), it must be taken in a proper way. For this, the following general guidelines have to be followed:

  • A biochar lot (batch) subject to sampling must consist of at least one cubic meter.
  • Before sampling, the whole lot has to be thoroughly mixed 3 times by turning and piling it upside-down by means of physical replacement with a front loader or comparable technical device.
  • 15 subsamples of 1.5 L each have than to be arbitrarily gathered from different spots of the homogenized biochar lot (ISO (2006) or Bunge & Bunge (1999)).
  • The 15 subsamples have to be united and then milled to a maximum particle size of 3 mm.
  • The milled subsample has than to be homogenized thoroughly by turning and piling it 3 times upside-down.
  • A further 15 sub-subsamples of 150 mL each have to be arbitrarily taken from different spots of the gathered subsample lot.
  • The 15 sub-subsamples (totaling 2.25 L) have to be united and than mixed together thoroughly by turning and piling them 3 times upside-down.

As illustrated in Bucheli et al. (2014), such a sampling procedure my still not be sufficient to obtain truly representative samples, but assures a degree of accuracy (bias) and reproducibility (variance) affordable to compare analytical results with guide values set in this certificate. In case of biochar production by a continuous process, we advise that biochar producers implement and install incremental cross-stream sampling devices as e.g. presented in Gy (2004), allowing for representative sampling of their product.


 

[18th October 2013]


[NEW TERMINOLOGY:]

The term pyrolysis ash for pyrolysed materials with less than 50% carbon content (DM) was changed into Bio-Carbon-Minerals (BCM). We are actually in discussion with the British Biochar Quality Mandate (BBM) and the IBI to harmonize the terminology and the threshold for the carbon content of biochars. 

5.1 The biochar's carbon content must be higher than 50% of the dry mass (DM). Pyrolysed organic matter with a carbon content lower than 50% are classified as Bio-Carbon-Minerals (BCM).

The organic carbon content of pyrolysed chars fluctuates between +/- 3% and 95% of the dry mass, dependent on the feedstock and process temperature used. For instance the carbon content of pyrolysed poultry manure is around 25%, while that of beech wood is around 85% and that of bones is under 10%. 

When using mineral-rich feedstocks such as sewage sludge or animal manure, the pyrolysed products tend to have a high ash content. Pyrolysed chars with carbon contents below 50% are therefore not classified as biochar but as Bio-Carbon-Minerals (BCM).

When BCM meet all other threshold criteria of this biochar certificate, they may be marketed as Bio-Carbon-Minerals (BCM). BCM have a high nutrient content, therefore representing a valuable fertiliser additive. This does, however, mean that they belong to a different product category.


[NEW SECTION:] 5.5. The quantity of Volatile Organic Compounds (VOC) must be available and listed.

During the pyrolysis process aromatic carbon, carbonates and a multitude of divers volatile organic compounds are formed. The later constitute a large part of the syngas that partly condensates on biochar surfaces and pores. These condensated syngas compounds are substantial constituents of biochar materials (Spokas et al., 2011; Yang et al., 2013), are essential for certain biochar functions and thus necessary for the characterisation of biochar and BCM. The VOC-content related to the temperature of volatalisation is further an important indicator for the evaluation of the pyrolysis process.

Methode: Thermal-Gravimetric-Analysis (TGA)

Principle: The TGA determines the loss of weight of the volatile matter according to the temperature without any oxygen.

Device: Leco TGA 701

Measurement: The empty crucibles are weighed. Afterwards the sample is put in the crucibles, the lid is closed and the software starts the program appropriate to the temperature. The highest temperature is 950 °C. Nitrogen covers all samples in the TGA 701. It is heated with 10 K/min. After finishing the TGA shows the loss of weight accorded to temperature.

 

page 5: [NEW SENTENCE:] The European Biochar Certificate is a voluntary standard.

page 7: [ADDITION:] 3.1 Feedstocks must be free of paint, solvents and other organic or non-organic contaminants. 

page 9: [DELETED:] the following sentences of section 5.1 were deleted for reason of low relevence for the certificate: In the sense of using resources as efficiently and sustainably as possible, it is preferable to compost or ferment mineral-rich biomasses, or for them to be concentrated into fertiliser. In doing so, the nutrients they contain can be recycled more efficiently than by pyrolysis. The specification of carbon content is of particular relevance when working with CO2 certificates 

page 9: [DELETED/ADDED:] section 5.2: Values exceeding 0.7 are an indication of [deleted: poor] [added:] non pyrolytic chars or pyrolysis deficiencies (Schimmelpfennig and Glaser, 2012).

page 10: [DELETED:] section 5.6: Please note that [the following was deleted as the given reason is not complet and of low relevance for the certificate: , due to biochar's high adsorption capacity,] these nutrients may only partly be available to plants. 

page 11: [REFORMULATION:] section 5.7: Some minor reformulation of the first two sentences:  Except some heavy metals that are volatile or semi volatile at the temperature of pyrolysis, the amount of heavy metals contained in the originally feedstock will remain in the final product. As in composting most heavy metals will naturally be more concentrated than in the starting material. 

page 11: [NEW SPECIFICATION:] specific surface area has to be specified not only for premium quality biochar but for all certified biochar and BCM. Measuring water holding capacity of the biochar is not mandatory anymore: 5.8 The delivery slip must specify the biochar's pH value, bulk density, water content and its specific surface area. 

The water holding capacity of a given biochar is a valuable indication on it’s effectiveness in increasing a soil's water holding capacity or for humidity buffering in building materials. However it’s analysis is not mandatory. 

page 12: [NEW SPECIFICATION:] PAHs have to be specified for each batch

 


 

[19th January 2013]

 

5.3 The molar H/Corg ratio must be less than 0.7

Following the discussions between EBC and IBI to harmonize the two certificates, the EBC decided in January 2013 to change the requirement from Molar H/Ctot to Molar H/Corg and changing thus the criteria to 0.7. With exception of the carbon content, all decisive thresholds of the two certificates are thus finally harmonized. 

 

5.7 The delivery slip must specify the biochar's [...] specific surface area [...].

The specific surface area is a measure of a biochar's quality and characteristics, and a control value for the pyrolysis method used. It should preferably be higher than 150 m2/g
DM. [it was added:] In some cases lower specific surfaces area than 150 m2/g might be desirable.